Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Ecol Lett ; 27(1): e14354, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38115163

ABSTRACT

Understanding the evolutionary mechanisms underlying the maintenance of individual differences in behavior and physiology is a fundamental goal in ecology and evolution. The pace-of-life syndrome hypothesis is often invoked to explain the maintenance of such within-population variation. This hypothesis predicts that behavioral traits are part of a suite of correlated traits that collectively determine an individual's propensity to prioritize reproduction or survival. A key assumption of this hypothesis is that these traits are underpinned by genetic trade-offs among life-history traits: genetic variants that increase fertility, reproduction and growth might also reduce lifespan. We performed a systematic literature review and meta-analysis to summarize the evidence for the existence of genetic trade-offs between five key life-history traits: survival, growth rate, body size, maturation rate, and fertility. Counter to our predictions, we found an overall positive genetic correlation between survival and other life-history traits and no evidence for any genetic correlations between the non-survival life-history traits. This finding was generally consistent across pairs of life-history traits, sexes, life stages, lab vs. field studies, and narrow- vs. broad-sense correlation estimates. Our study highlights that genetic trade-offs may not be as common, or at least not as easily quantifiable, in animals as often assumed.


Subject(s)
Biological Evolution , Life History Traits , Animals , Reproduction/physiology , Fertility/genetics , Phenotype
2.
Trends Ecol Evol ; 38(6): 545-553, 2023 06.
Article in English | MEDLINE | ID: mdl-36803986

ABSTRACT

Variation between individuals is a key component of selection and hence evolutionary change. Social interactions are important drivers of variation, potentially making behaviour more similar (i.e., conform) or divergent (i.e., differentiate) between individuals. While documented across a wide range of animals, behaviours and contexts, conformity and differentiation are typically considered separately. Here, we argue that rather than independent concepts, they can be integrated onto a single scale that considers how social interactions drive changes in interindividual variance within groups: conformity reduces variance within groups while differentiation increases it. We discuss the advantages of placing conformity and differentiation at different ends of a single scale, allowing for a deeper understanding of the relationship between social interactions and interindividual variation.


Subject(s)
Social Behavior , Animals
3.
Proc Biol Sci ; 290(1992): 20222115, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36722081

ABSTRACT

Mapping the eco-evolutionary factors shaping the development of animals' behavioural phenotypes remains a great challenge. Recent advances in 'big behavioural data' research-the high-resolution tracking of individuals and the harnessing of that data with powerful analytical tools-have vastly improved our ability to measure and model developing behavioural phenotypes. Applied to the study of behavioural ontogeny, the unfolding of whole behavioural repertoires can be mapped in unprecedented detail with relative ease. This overcomes long-standing experimental bottlenecks and heralds a surge of studies that more finely define and explore behavioural-experiential trajectories across development. In this review, we first provide a brief guide to state-of-the-art approaches that allow the collection and analysis of high-resolution behavioural data across development. We then outline how such approaches can be used to address key issues regarding the ecological and evolutionary factors shaping behavioural development: developmental feedbacks between behaviour and underlying states, early life effects and behavioural transitions, and information integration across development.


Subject(s)
Big Data , Biological Evolution , Animals
4.
Philos Trans R Soc Lond B Biol Sci ; 378(1874): 20220059, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36802782

ABSTRACT

Collective behaviours, such as flocking in birds or decision making by bee colonies, are some of the most intriguing behavioural phenomena in the animal kingdom. The study of collective behaviour focuses on the interactions between individuals within groups, which typically occur over close ranges and short timescales, and how these interactions drive larger scale properties such as group size, information transfer within groups and group-level decision making. To date, however, most studies have focused on snapshots, typically studying collective behaviour over short timescales up to minutes or hours. However, being a biological trait, much longer timescales are important in animal collective behaviour, particularly how individuals change over their lifetime (the domain of developmental biology) and how individuals change from one generation to the next (the domain of evolutionary biology). Here, we give an overview of collective behaviour across timescales from the short to the long, illustrating how a full understanding of this behaviour in animals requires much more research attention on its developmental and evolutionary biology. Our review forms the prologue of this special issue, which addresses and pushes forward understanding the development and evolution of collective behaviour, encouraging a new direction for collective behaviour research. This article is part of a discussion meeting issue 'Collective behaviour through time'.


Subject(s)
Mass Behavior , Social Behavior , Animals , Behavior, Animal , Decision Making
5.
Nat Commun ; 13(1): 6419, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36307437

ABSTRACT

Behavioral individuality is a ubiquitous phenomenon in animal populations, yet the origins and developmental trajectories of individuality, especially very early in life, are still a black box. Using a high-resolution tracking system, we mapped the behavioral trajectories of genetically identical fish (Poecilia formosa), separated immediately after birth into identical environments, over the first 10 weeks of their life at 3 s resolution. We find that (i) strong behavioral individuality is present at the very first day after birth, (ii) behavioral differences at day 1 of life predict behavior up to at least 10 weeks later, and (iii) patterns of individuality strengthen gradually over developmental time. Our results establish a null model for how behavioral individuality can develop in the absence of genetic and environmental variation and provide experimental evidence that later-in-life individuality can be strongly shaped by factors pre-dating birth like maternal provisioning, epigenetics and pre-birth developmental stochasticity.


Subject(s)
Behavior, Animal , Poecilia , Animals
6.
Am Nat ; 199(3): 330-344, 2022 03.
Article in English | MEDLINE | ID: mdl-35175891

ABSTRACT

AbstractConsiderable theoretical work predicts that intraspecific trait variation can have profound ecological consequences by altering species interactions. Because of their high flexibility, behavioral traits may be especially relevant in mediating how species respond to one another, thus affecting food web dynamics and ecosystem functioning. However, empirical evidence supporting this idea is limited. Here, we generated predator groups where we manipulated the composition of behavioral types within the groups to assess effects on predator growth rates, prey communities, basal resources, and ecosystem functioning in replicated outdoor ponds. Using European perch (Perca fluviatilis), we created three types of predator populations: two where all individuals expressed either bold or shy phenotypes and one that contained a mix of individuals of the two behavioral types. Bold perch grew faster in mixed populations, indicating that predator growth depends on each individual's behavioral type and that of its group members. However, there was no evidence that the behavioral composition of the perch population directly altered the dynamics of lower trophic levels. Instead, final perch biomass, not behavioral composition, had the strongest influence on lower trophic levels. Thus, the central question may not be whether predator behavior matters at all for trophic dynamics but rather when behavioral effects will predominate over effects of other influences, such as predator biomass variation.


Subject(s)
Ecosystem , Food Chain , Animals , Biomass , Ponds , Population Dynamics , Predatory Behavior
7.
Biol Rev Camb Philos Soc ; 97(2): 802-816, 2022 04.
Article in English | MEDLINE | ID: mdl-34894041

ABSTRACT

Within animal populations there is variation among individuals in their tendency to be social, where more sociable individuals associate more with other individuals. Consistent inter-individual variation in 'sociability' is considered one of the major axes of personality variation in animals along with aggressiveness, activity, exploration and boldness. Not only is variation in sociability important in terms of animal personalities, but it holds particular significance for, and can be informed by, two other topics of major interest: social networks and collective behaviour. Further, knowledge of what generates inter-individual variation in social behaviour also holds applied implications, such as understanding disorders of social behaviour in humans. In turn, research using non-human animals in the genetics, neuroscience and physiology of these disorders can inform our understanding of sociability. For the first time, this review brings together insights across these areas of research, across animal taxa from primates to invertebrates, and across studies from both the laboratory and field. We show there are mixed results in whether and how sociability correlates with other major behavioural traits. Whether and in what direction these correlations are observed may differ with individual traits such as sex and body condition, as well as ecological conditions. A large body of evidence provides the proximate mechanisms for why individuals vary in their social tendency. Evidence exists for the importance of genes and their expression, chemical messengers, social interactions and the environment in determining an individual's social tendency, although the specifics vary with species and other variables such as age, and interactions amongst these proximate factors. Less well understood is how evolution can maintain consistent variation in social tendencies within populations. Shifts in the benefits and costs of social tendencies over time, as well as the social niche hypothesis, are currently the best supported theories for how variation in sociability can evolve and be maintained in populations. Increased exposure to infectious diseases is the best documented cost of a greater social tendency, and benefits include greater access to socially transmitted information. We also highlight that direct evidence for more sociable individuals being safer from predators is lacking. Variation in sociability is likely to have broad ecological consequences, but beyond its importance in the spread of infectious diseases, direct evidence is limited to a few examples related to dispersal and invasive species biology. Overall, our knowledge of inter-individual variation in sociability is highly skewed towards the proximate mechanisms. Our review also demonstrates, however, that considering research from social networks and collective behaviour greatly enriches our understanding of sociability, highlighting the need for greater integration of these approaches into future animal personality research to address the imbalance in our understanding of sociability as a personality trait.


Subject(s)
Personality , Social Behavior , Animals , Behavior, Animal , Introduced Species
8.
Front Physiol ; 12: 740604, 2021.
Article in English | MEDLINE | ID: mdl-34712149

ABSTRACT

The capacity to compensate for environmental change determines population persistence and biogeography. In ectothermic organisms, performance at different temperatures can be strongly affected by temperatures experienced during early development. Such developmental plasticity is mediated through epigenetic mechanisms that induce phenotypic changes within the animal's lifetime. However, epigenetic modifiers themselves are encoded by DNA so that developmental plasticity could itself be contingent on genetic diversity. In this study, we test the hypothesis that the capacity for developmental plasticity depends on a species' among-individual genetic diversity. To test this, we exploited a unique species complex that contains both the clonal, genetically identical Amazon molly (Poecilia formosa), and the sexual, genetically diverse Atlantic molly (Poecilia mexicana). We predicted that the greater among-individual genetic diversity in the Atlantic molly may increase their capacity for developmental plasticity. We raised both clonal and sexual mollies at either warm (28°C) or cool (22°C) temperatures and then measured locomotor capacity (critical sustained swimming performance) and unforced movement in an open field across a temperature gradient that simulated environmental conditions often experienced by these species in the wild. In the clonal Amazon molly, differences in the developmental environment led to a shift in the thermal performance curve of unforced movement patterns, but much less so in maximal locomotor capacity. In contrast, the sexual Atlantic mollies exhibited the opposite pattern: developmental plasticity was present in maximal locomotor capacity, but not in unforced movement. Thus our data show that developmental plasticity in clones and their sexual, genetically more diverse sister species is trait dependent. This points toward mechanistic differences in how genetic diversity mediates plastic responses exhibited in different traits.

9.
Ecol Evol ; 11(10): 5381-5392, 2021 May.
Article in English | MEDLINE | ID: mdl-34026014

ABSTRACT

The existence of consistent individual differences in behavior has been shown in a number of species, and several studies have found observable sex differences in these behaviors, yet their evolutionary implications remain unclear. Understanding the evolutionary dynamics of behavioral traits requires knowledge of their genetic architectures and whether this architecture differs between the sexes. We conducted a quantitative genetic study in a sexually size-dimorphic spider, Larinioides sclopetarius, which exhibits sex differences in adult lifestyles. We observed pedigreed spiders for aggression, activity, exploration, and boldness and used animal models to disentangle genetic and environmental influences on these behaviors. We detected trends toward (i) higher additive genetic variances in aggression, activity, and exploration in males than females, and (ii) difference in variances due to common environment/maternal effects, permanent environment and residual variance in aggression and activity with the first two variances being higher in males for both behaviors. We found no sex differences in the amount of genetic and environmental variance in boldness. The mean heritability estimates of aggression, activity, exploration, and boldness range from 0.039 to 0.222 with no sizeable differences between females and males. We note that the credible intervals of the estimates are large, implying a high degree of uncertainty, which disallow a robust conclusion of sex differences in the quantitative genetic estimates. However, the observed estimates suggest that sex differences in the quantitative genetic architecture of the behaviors cannot be ruled out. Notably, the present study suggests that genetic underpinnings of behaviors may differ between sexes and it thus underscores the importance of taking sex differences into account in quantitative genetic studies.

10.
J Anim Ecol ; 90(1): 260-272, 2021 01.
Article in English | MEDLINE | ID: mdl-32720305

ABSTRACT

Consistent individual differences in behaviour (i.e. personality) can be explained in an evolutionary context if they are favoured by life history trade-offs as conceptualized in the pace-of-life syndrome (POLS) hypothesis. Theory predicts that faster-growing individuals suffer higher mortality and that this trade-off is mediated through exploration/risk-taking personality, but empirical support for this remains limited and ambiguous. Equivocal support to the POLS hypothesis suggests that the link between life history and personality may only emerge under certain circumstances. Understanding personality-driven trade-offs would be facilitated by long-term studies in wild populations experiencing different ecological conditions. Here, we tested whether personality measured in semi-captivity was associated with a growth-mortality trade-off via risk-taking in the wild in two subpopulations of juvenile lemon sharks Negaprion brevirostris known to differ in their predator abundance. We expected stronger personality-driven trade-offs in the predator-rich environment as compared to the predator-poor environment. Sharks were captured yearly from 1995 onwards allowing us to obtain long-term data on growth and apparent survival in each subpopulation. We then used a novel open-field assay to test sharks for exploration personality yearly from 2012 to 2017. A subset of the tested sharks was monitored in the field using telemetry to document risk-taking behaviours. We tested (a) if fast explorers in captivity took more risks and grew faster in the wild and (b) if natural selection acted against more explorative, faster-growing sharks. In the subpopulation with fewer predators, more explorative sharks in captivity took more risks in the wild and grew faster. In turn, larger, fast-growing sharks had lower apparent survival. In the predator-rich subpopulation, despite finding selection on fast growth, we found no link between exploration personality and the growth-mortality trade-off. Our study demonstrates that the association between personality and life history is favoured in some ecological contexts but not in others. We identify predator and resource abundance as two main potential drivers of the personality-mediated trade-off and emphasize that future work on the POLS hypothesis would benefit from an approach integrating behaviour and life history across ecological conditions.


Subject(s)
Biological Evolution , Personality , Animals
11.
Trends Ecol Evol ; 36(2): 132-138, 2021 02.
Article in English | MEDLINE | ID: mdl-33203522

ABSTRACT

Central theories explaining the maintenance of individual differences in behavior build on the assumption that behavior mediates life-history trade-offs between current and future reproduction. However, current empirical evidence does not robustly support this assumption. This mismatch might be because current theory is not clear about the role of behavior in individual allocation versus acquisition of resources, hindering empirical testing. The relative importance of allocation compared to acquisition is a key feature of classic life-history theory, but appears to have been lost in translation in recent developments of life-history theory involving behavior. We argue that determining the relative balance between variation in resource allocation and acquisition, and the role of behavior in this process, will help to build more robust and precise predictions.


Subject(s)
Life History Traits , Reproduction
13.
Am Nat ; 195(2): 393, 2020 02.
Article in English | MEDLINE | ID: mdl-32017613
15.
Ecol Lett ; 23(2): 399-408, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31811699

ABSTRACT

Research focusing on among-individual differences in behaviour ('animal personality') has been blooming for over a decade. Central theories explaining the maintenance of such behavioural variation posits that individuals expressing greater "risky" behaviours should suffer higher mortality. Here, for the first time, we synthesize the existing empirical evidence for this key prediction. Our results did not support this prediction as there was no directional relationship between riskier behaviour and greater mortality; however there was a significant absolute relationship between behaviour and survival. In total, behaviour explained a significant, but small, portion (5.8%) of the variance in survival. We also found that risky (vs. "shy") behavioural types live significantly longer in the wild, but not in the laboratory. This suggests that individuals expressing risky behaviours might be of overall higher quality but the lack of predation pressure and resource restrictions mask this effect in laboratory environments. Our work demonstrates that individual differences in behaviour explain important differences in survival but not in the direction predicted by theory. Importantly, this suggests that models predicting behaviour to be a mediator of reproduction-survival trade-offs may need revision and/or empiricists may need to reconsider their proxies of risky behaviours when testing such theory.


Subject(s)
Individuality , Personality , Animals , Behavior, Animal , Predatory Behavior , Reproduction , Risk-Taking
16.
Ecol Evol ; 9(18): 10758-10766, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31624579

ABSTRACT

Sex differences in the genetic architecture of behavioral traits can offer critical insight into the processes of sex-specific selection and sexual conflict dynamics. Here, we assess genetic variances and cross-sex genetic correlations of two personality traits, aggression and activity, in a sexually size-dimorphic spider, Nuctenea umbratica. Using a quantitative genetic approach, we show that both traits are heritable. Males have higher heritability estimates for aggressiveness compared to females, whereas the coefficient of additive genetic variation and evolvability did not differ between the sexes. Furthermore, we found sex differences in the coefficient of residual variance in aggressiveness with females exhibiting higher estimates. In contrast, the quantitative genetic estimates for activity suggest no significant differentiation between males and females. We interpret these results with caution as the estimates of additive genetic variances may be inflated by nonadditive genetic effects. The mean cross-sex genetic correlations for aggression and activity were 0.5 and 0.6, respectively. Nonetheless, credible intervals of both estimates were broad, implying high uncertainty for these estimates. Future work using larger sample sizes would be needed to draw firmer conclusions on how sexual selection shapes sex differences in the genetic architecture of behavioral traits.

17.
Nat Ecol Evol ; 3(2): 161-169, 2019 02.
Article in English | MEDLINE | ID: mdl-30692622

ABSTRACT

Science requires replication. The development of many cloned or isogenic model organisms is a testament to this. But researchers are reluctant to use these traditional animal model systems for certain questions in evolution or ecology research, because of concerns over relevance or inbreeding. It has largely been overlooked that there are a substantial number of vertebrate species that reproduce clonally in nature. Here we highlight how use of these naturally evolved, phenotypically complex animals can push the boundaries of traditional experimental design and contribute to answering fundamental questions in the fields of ecology and evolution.


Subject(s)
Biological Evolution , Models, Animal , Reproduction, Asexual , Vertebrates/physiology , Animals , Ecology , Life History Traits , Phenotype
18.
Proc Biol Sci ; 285(1872)2018 02 14.
Article in English | MEDLINE | ID: mdl-29436496

ABSTRACT

Establishing how collective behaviour emerges is central to our understanding of animal societies. Previous research has highlighted how universal interaction rules shape collective behaviour, and that individual differences can drive group functioning. Groups themselves may also differ considerably in their collective behaviour, but little is known about the consistency of such group variation, especially across different ecological contexts that may alter individuals' behavioural responses. Here, we test if randomly composed groups of sticklebacks differ consistently from one another in both their structure and movement dynamics across an open environment, an environment with food, and an environment with food and shelter. Based on high-resolution tracking data of the free-swimming shoals, we found large context-associated changes in the average behaviour of the groups. But despite these changes and limited social familiarity among group members, substantial and predictable behavioural differences between the groups persisted both within and across the different contexts (group-level repeatability): some groups moved consistently faster, more cohesively, showed stronger alignment and/or clearer leadership than other groups. These results suggest that among-group heterogeneity could be a widespread feature in animal societies. Future work that considers group-level variation in collective behaviour may help understand the selective pressures that shape how animal collectives form and function.


Subject(s)
Ecosystem , Movement , Smegmamorpha/physiology , Social Behavior , Animals , England , Random Allocation
19.
Nat Commun ; 8: 15361, 2017 05 17.
Article in English | MEDLINE | ID: mdl-28513582

ABSTRACT

Behavioural individuality is thought to be caused by differences in genes and/or environmental conditions. Therefore, if these sources of variation are removed, individuals are predicted to develop similar phenotypes lacking repeatable individual variation. Moreover, even among genetically identical individuals, direct social interactions are predicted to be a powerful factor shaping the development of individuality. We use tightly controlled ontogenetic experiments with clonal fish, the Amazon molly (Poecilia formosa), to test whether near-identical rearing conditions and lack of social contact dampen individuality. In sharp contrast to our predictions, we find that (i) substantial individual variation in behaviour emerges among genetically identical individuals isolated directly after birth into highly standardized environments and (ii) increasing levels of social experience during ontogeny do not affect levels of individual behavioural variation. In contrast to the current research paradigm, which focuses on genes and/or environmental drivers, our findings suggest that individuality might be an inevitable and potentially unpredictable outcome of development.


Subject(s)
Behavior, Animal/physiology , Biological Variation, Population/physiology , Poecilia/growth & development , Social Behavior , Animals , Developmental Biology , Environment , Female , Male
20.
Proc Biol Sci ; 283(1830)2016 05 11.
Article in English | MEDLINE | ID: mdl-27170711

ABSTRACT

Across a wide range of animal taxa, winners of previous fights are more likely to keep winning future contests, just as losers are more likely to keep losing. At present, such winner and loser effects are considered to be fairly transient. However, repeated experiences with winning and/or losing might increase the persistence of these effects, generating long-lasting consequences for social structure. To test this, we exposed genetically identical individuals of a clonal fish, the Amazon molly (Poecilia formosa), to repeated winning and/or losing dominance interactions during the first two months of their life. We subsequently investigated whether these experiences affected the fish's ability to achieve dominance in a hierarchy five months later after sexual maturity, a major life-history transition. Individuals that had only winning interactions early in life consistently ranked at the top of the hierarchy. Interestingly, individuals with only losing experience tended to achieve the middle dominance rank, whereas individuals with both winning and losing experiences generally ended up at the bottom of the hierarchy. In addition to demonstrating that early social interactions can have dramatic and long-lasting consequences for adult social behaviour and social structure, our work also shows that higher cumulative winning experience early in life can counterintuitively give rise to lower social rank later in life.


Subject(s)
Behavior, Animal , Poecilia , Social Behavior , Animals , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...